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Abstract

The combination of satellite remote sensing and carbon cycle models provides an 
opportunity for regional to global scale monitoring of terrestrial gross primary 
production, ecosystem respiration, and net ecosystem production.  FPAR (the fraction of 
photosynthetically active radiation absorbed by the plant canopy) is a critical input to 
diagnostic models, however little is known about the relative effectiveness of FPAR 
products from different satellite sensors nor about the sensitivity of flux estimates to 
different parameterization approaches.  In this study, we used multiyear observations of 
carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate
these factors.  FPAR products from the MODIS and SeaWiFS sensors, and the effects of 
single site vs. cross-site parameter optimization were tested with the CFLUX model.  The 
SeaWiFs FPAR product showed greater dynamic range across sites and resulted in 
slightly reduced flux estimation errors relative to the MODIS product when using cross-
site optimization.  With site-specific parameter optimization, the flux model was effective
in capturing seasonal and interannual variation in the carbon fluxes at these sites.  The 
cross-site prediction errors were lower when using parameters from a cross-site 
optimization compared to parameter sets from optimization at single sites.  These results 
support the practice of multisite optimization within a biome for parameterization of 
diagnostic carbon flux models. 

Introduction

The ability to monitor terrestrial carbon fluxes at regional to global scales is of increasing 
interest in relation to understanding unmanaged and managed influences of the biosphere 
on the global carbon cycle (Cannadel et al. 2007).  Satellite remote sensing potentially 
offers spatially continuous information on relevant land surface properties including land 
cover, vegetation type, vegetation structure, disturbance history, phenology, drought 
stress, and light use efficiency (Running et al. 1999, Turner et al. 2004).  However, 
design of appropriate models that use this information for scaling carbon fluxes, and 
parameterizing these models for spatial mode application, remain significant research 
issues.  

In diagnostic carbon cycles models, i.e. driven by time series data from satellites on 
vegetation greenness, canopy gross primary production (GPP) is generally estimated as 
the product of APAR (the absorbed photosynthetically active radiation) and light use 
efficiency (LaFont et al. 2002, Mahadevan et al. 2008).  Scalars for environmental stress 
factors like low temperature and high vapor pressure deficit may be used to modify a 
base rate for light use efficiency (LUE).  Autotrophic respiration is often calculated as a 
fixed proportion on GPP.  Algorithms for heterotrophic respiration are more variable, 
with some using simple base rate formulations and others using multiple litter and soil 
carbon pools with varying turnover times. 

FPAR (the fraction of incoming PAR absorbed by the canopy) is a critical input to 
diagnostic models and global FPAR products are now derived from multiple sensors 
(MODIS, Myneni et al. 2002; SeaWiFS, Gobron et al. 2006; MERIS, Gobron et al. 
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2008).  The algorithms generally use empirical relationships or radiation transfer 
models).  Ground validation of these FPAR products has been limited to a few tens of 
sites at most (e.g. Fensholt et al. 2006, Turner et al. 2006a) and accuracy varies widely.  

Diagnostic models tend to be kept simple enough that the parameters can be optimized 
from measurements.  The need for parameter optimization traces in part to the limitations 
in satellite data, notably effects of cloudiness on FPAR (the fraction of incident PAR 
absorbed by the canopy).  To some degree, parameter optimization compensates for 
possible errors elsewhere in the combination of model structure and model inputs 
(Medlyn et al. 2005).  

In the simplest case, a diagnostic model has been optimized across all biome types using 
a single set of measurements of net primary production (NPP) as reference values (Potter 
et al. 1993).  More commonly, diagnostic models are parameterized at the biome level of 
vegetation stratification, the rationale being that in the case of vegetation parameters like 
LUE, plants make evolutionary trade-offs such that specialization for one habitat will 
make it less competitive in other climate regimes.  For parameters related to heterotrophic 
respiration (Rh), the situation is similar in that controls on decomposition rate, such as 
litter quality, may be characteristic of specific ecosystem types (Adair et al. 2008).  

Because GPP and ecosystem respiration (Re) can be estimated from measurements of net 
ecosystem exchange (NEE) at eddy covariance flux towers (Densai et al. 2008), 
establishment of a network of tower sites (Baldocchi et al. 2001) has greatly enhanced the 
possibilities for parameterizing and testing diagnostic models (e.g. Mahadevan et al. 
2008).  However, there has been little study of using multiple flux tower sites for 
parameterization within a single biome.  Makela et al. (2008) found that responses of 
GPP to environmental stressors were similar across 5 conifer sites but base rates for LUE 
were different.  

In this study, we evaluate alternative FPAR sources and parameter optimization schemes 
for a carbon cycle diagnostic model applied at four sites in western North America 
dominated by conifer forests.  Three years of tower data at each tower site provided the 
reference observations.  Independent optimizations were performed at each tower site and 
pooled across sites with each of 3 forms of FPAR.

Methods

Sites

Four coniferous forest sites in western North America were used in the study (Table 1).  
Each had a multiyear record of eddy covariance flux measurements and observations of 
meteorological variables.  The sites varied widely in climate conditions, stand age, and 
leaf area index.  The Campbell River site (CR) is a young Douglas-fir (Psuedotsuga 
menzeisii) stand that originated with a clear-cut harvest in 1949.  The stand is located on 
Vancouver Island in western Canada and the climate is characterized by cool, wet winters 
and mild dry summers.  The Wind River site (WR) is an old-growth stand in the western 
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Washington (USA) dominated by Douglas-fir and western hemlock (Tsuga heterophylla).  
Winters are colder and summers warmer than at CR.  The Metolius River site (MR) is a 
mature ponderosa pine (Pinus ponderosa) stand in central Oregon (USA) that was 
harvested around 1920.  Winters are cold and summers dry, with relatively high summer 
vapor pressure deficits (VPDs).  The Niwot Ridge site in central Colorado (USA) was 
logged about 100 year ago.  It is a subalpine forest dominated by Engelmann spruce 
(Picea engelmanii), subalpine fire (Abies lasiocarpa), and lodgepole pine (Pinus flexilus).  

Methodology for measurement of metrological variables and NEE at the sites are given in 
the references in Table 1.  Missing meteorological data were filled from nearby 
metrological station data and gaps in flux observations were filled by reference to 
empirical functions driven by meteorological data derived from periods of good quality 
observations.  GPP estimates were derived as the inverse of net ecosystem exchange 
(NEE) minus ecosystem respiration (Re) during daytime periods, with Re based on 
relationships of nightime NEE to air or soil temperature.  At NR, the reference flux 
values were the best fit estimates from the SIPNET model fit to the NEE observations 
(Sachs et al. 2007).  GPPs from SIPNET were of similar magnitude to GPPs modeled 
using the temperature/nightime NEE approach (Sims et al. 2008).  

Model Description

A diagnostic carbon flux model (CFLUX) developed previously for application in 
coniferous forests was used in this study. The detailed algorithms and their rationales are 
given in Turner et al. (2006) and briefly described here.  The model produces daily 
estimates of GPP, autotrophic respiration (Ra), heterotrophic respiration (Rh), and NEE.  
Daily meteorological inputs are photosynthetically active radiation, 24 hr minimum 
temperature, 24 hr average temperature, daytime mean vapor pressure deficit (VPD), and 
24 hr total precipitation.  Site variables are vegetation type, stand age, and soil water 
holding capacity (here we used 200 mm in all cases). 

The GPP estimate is based on a light use efficiency approach.

GPP = eg * ↓PAR * FPAR                  (1)

Where

GPP = gross primary production (gC m-2 d-1)

eg = final LUE (gC MJ-1)

↓PAR = incident photosynthetically active radiation (MJ m-2 d-1)

FPAR = fraction of ↓PAR absorbed by the canopy.
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eg is calculated from a minimum value (based on observations at the flux tower of clear 

sky LUE under favorable metrological conditions) that is adjusted upward as a function 

of cloudiness and downward as a function of Tmin, VPD, the soil water status (SW), and 

the stand age (SA).

Ra is the sum of maintenance respiration (Rm) and growth respiration (Rg).

Rm = Rm-base * Q10^((Tair – 20)/10) * (1/-k) (log (1-FPAR))       (3)

where 

Rm-base = base rate of autotrophic respiration (gC m-2 d-1)

Q10 = change in rate for a 10oC increase in temperature (here we use 2.0)

Tair = daily (24 hr) mean air temperature

k = radiation extinction coefficient (here we use 0.5)

FPAR = fraction of ↓PAR absorbed by the canopy.

The Rg component of Ra is calculated on a daily basis as:

Rg = (GPP – Rm) * Rg_frac                                                                             

Where

Rg_frac is the fraction of carbon available for growth that is used for growth respiration 

(here we used 0.25).

The Rh algorithm also uses a base rate, and contains functions for sensitivity to 

temperature, soil moisture, and stand age.  

Rh = Rh-base *  SST * SSW * SSA * FPAR                                (6)
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Where

Rh-base = base rate of heterotrophic respiration (gC m-2 d-1)

SST  = scalar for soil temperature 

SSWh = scalar for soil water content 

SSAh = stand age factor 

FPAR = fraction of ↓PAR absorbed by the canopy

CFLUX calculates a simple water balance based on precipitation as the input and 
evapotranspiration (ET) plus runoff as outputs.  ET is calculated from GPP and water use 
efficiency (mm gC-1).  

FPAR Data

We obtained 3 years of the standard FPAR product (collection 4.5) from the MODIS 
sensor for each site from the U.S.G.S. Data Archive and Analysis Center (LPDAAC 
2008).  The standard FPAR product (MODISorig) has a spatial resolution of 1 km and is 
an 8-day maximum value (Myneni et al. 2002).  The value is derived from a radiation 
transfer algorithm when possible and an empirical spectral vegetation index approach as a 
backup algorithm.  Quality flags give an indication of which algorithm was used and the 
relative quality of the estimate (Cohen et al. 2006).   

To minimize errors associated with low quality data, a simple linear interpolation 
algorithm was used to fill values for days with a low data quality flag (MODISfill) (Zhao 
et al. 2005) and we applied it to the MODISorig data to form a MODISfill product.  We 
also investigated the effect of a third form of FPAR in which the FPARfill version is 
smoothed with the TIMESAT algorithm (Jonsson and Eklund 2004).  This version 
(MODISTS) was produced by NASA over North America for evaluation purposes (Gao et 
al. 2007, Nightengale et al. In Press).  

We also tested an independent FPAR data set for these sites derived from the SeaWiFS 
sensor (Gobron et al. 2006).  Spatial resolution of SeaWiFS data is ~2.2 km and temporal 
resolution is 10 days.  As with the MODIS FPAR product, we used the Zhao et al. (2005) 
algorithm to fill missing data (SWfill).

Parameter Optimization Approach

The scheme for optimizing CFLUX parameters at a single flux tower sites and year is 
described in Turner et al. (2006). Briefly, there are three steps.  The reference data 
required are daily estimates for GPP and NEE, and an estimate of NPP at the site.  Here 
we used tower-based GPP and NEE.  NPP was assumed to be a fixed proportion of GPP 
based on measurements at the site (WR, CR, MR) or 0.47 following Waring et al. (1998).  
The possible range for the parameter values is based on literature studies and preliminary 
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model runs.  The optimization may also choose to not use the temperature or VPD scalars 
if error is minimized by doing so.  All combinations over the complete possible range of 
each parameter are examined.  In the first step, the five parameters controlling GPP 
(maximum LUE and the upper and lower bounds for the VPD and Tmin effects) are 
optimized using tower GPP for reference values.  Minimum Root Mean Square Error 
(RMSE) is used as the criteria for selecting the optimum parameter set.  In the second 
step, the optimized GPP parameters are carried over and the base rate for maintenance 
respiration (Rm-base) is optimized using the annual NPP as a reference and the minimum 
bias as the selection criteria.  Lastly, the optimized parameters for GPP and Rm are 
carried over and the base rate for Rh, along with a parameter that determines sensitivity to 
temperature, and the minimum FPAR (permits Rh when FPAR is artifactually low 
(Turner et al. 2006), are optimized using the daily (24 hr) NEEs as the reference values, 
and the minimum RMSE as the selection criteria.

To extend the optimization procedure to cover a three year interval for a site, a single 
RMSE was computed for the 3 years of data (n = 1095) in the GPP and NEE comparisons 
and the 3 year sum of the absolute values for the NPP bias was used in the Rm_base
optimization.  Similarly, to optimize parameters over multiple sites and years, single 
RMSEs and sums of absolute NPP bias were employed.  All parameters except those 
optimized and LUEclear-sky were the same in the cross-site optimization.  Site level 
LUEclear-sky was retained because it was assumed that in a spatial model application it 
could be retrieved from remote sensing (Drolet et al. 2008).

A cross-site optimization was performed for each FPAR type then a site-level 
optimization was performed for each site and FPAR type.  For comparisons of site-level 
and cross-site optimizations within one FPAR type, results are presented for the case with 
SWfill FPAR because that FPAR type yielded the lowest RMSE for NEE in the initial 
FPAR comparison.

Results

FPAR Comparisons

In the MODISorig FPAR product, there were multiple 8-day periods at all sites when high 
quality data were not available, probably because of persistent heavy cloud cover (Figure 
2).  The original data from the SeaWIFS FPAR product showed a similar pattern. These 
periods of no data occurred during all seasons but were most prevalent in winter.  The 
simple gap filling algorithm of Zhao et al. (2005) effectively corrected most of these 
problems.  At CR, which does not usually experience winter snow cover, there were still 
some artifactual periods of low MODISfill FPAR in winter.  At WR and MR, there is 
occasional snow cover in the winter but the MODISfill FPAR had no major artifacts.  At 
NR, there is a solid snow cover all winter, which would cover some of the tree 
vegetation, hence the strong season signal in MODISfill FPAR at NR is reasonable.

In terms of the maximum FPAR, there was remarkable little difference in MODISfill 
among these sites considering the great range of LAI. Summer maximum MODISfill was 
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close to 0.95 at all sites.  This value is about what is predicted by a simple Beers Law 
conversion of LAI to FPAR (Table 1).  The Beer’s Law conversion does not take into 
account clumping of foliage which is common in conifer stands and would tend to reduce 
FPAR (Stenberg 1996).  The MODIS FPARs thus appear to be overestimates at MR and 
NR.  Interestingly, the SWfill FPARs exhibit more dynamic range between sites than the 
MODISfill product but appear to be underestimates for the most part.  

When parameter optimization was run across all sites and years for each FPAR type, the 
RMSE for GPP and the RMSE for Re were lowest for MODISTS and RMSE for NEE was
lowest for SWfill (Table 2).  In the one-to-one plot for NEE, the slope and the R2 values 
were similar for MODISfill and MODISTS but the slope was closer to 1.0 and the R2

higher for SWfill (Figure 3).  

The differences in FPAR resulted in different values for the optimized parameters in 
some cases (data not shown).  The modest benefits of the greater dynamic range across 
sites in SWfill were most evident at the NR site (Figure 4).  At that subalpine site, the flux 
rates were generally low relative to the other sites, so in a multisite optimization its 
estimates for GPP and Re tended to be high.  This was much more the case with the 
MODISfill product because there was essentially no difference in the FPARs.  With SWfill, 
the lower absolute FPAR at the NR site helped bring the simulated fluxes down.  As 
would be expected, the optimized base rates were generally lower for the MODIS FPARs 
compared to the SW FPARs because the MODIS FPARs were consistently higher.

Site-level Optimization

Gross Primary Production

In the observations, it is clear that available ↓PAR tends to be the dominant influence on 
GPP in these coniferous forests.  Day-to-day variation is smallest at CR (Figure 5) which 
also has the mildest winter and summertime temperatures.  Much larger day-to-day 
variation in GPP is found at the other sites and appears to be driven primarily by episodes 
of high VPD during the main part of the growing season and low temperatures in the 
winter.  There is evidence of soil drought effects on GPP at MR and WR in some years.

The optimization “chose” to use the VPD scalar at all sites and it was obviously helping 
drive down simulated GPP on high VPD days in parallel with the observations.  The 
optimizations also chose to use the Tmin scalar except at WR and it was obviously 
helping capture day-to-day variation in GPP during the winter.  A significant proportion 
of annual GPP occurs during the winter at WR (Falk et al. 2008) which suggests little 
sensitivity to temperature per se.  Whereas the observed clear-sky LUE varied by a factor 
of 3 (Table 1), optimized values for the maximum LUE ranged between 3.0 (NR) and 4.0 
(MR) (Table 3).  

Ecosystem Respiration
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Tower observations of Re showed a similar seasonality to GPP (Figure 6).  The day-to-
day variability in Re was greater at the 2 high LAI sites, probably because of the higher 
foliar biomass and the sensitivity of foliar respiration to air temperature.  Day-to-day 
variation was lowest at the coolest site (NR).  

The simulations captured much of the mid-growing season day-to-day variability at CR 
and WR (Figure 6).  At MR the Rh was shut down by the soil moisture scalar in years 
with dry summers, which appeared to match observations.  

The optimal base rates for maintenance respiration varied by over a factor of 4 whereas 
the selected base rate for Rh, and the a parameter for Rh, varied by a factor of 2 to 4  
(Table 3).

Net Ecosystem Exchange

At all sites, there is a period of positive NEE (carbon sink) in the spring and early 
summer followed by a sustained or fluctuating period of negative NEE (carbon source) in 
mid summer (Figure 7).  This patterns is most apparent at WR and least so at NR.  Day-
to-day variation in NEE is high at all sites.  The simulations generally followed the 
seasonal trend seen in the observations and showed day-to-day variation of similar 
magnitude and response to environmental variation.

Interannual Variation

NEE is usually a small difference between the much larger GPP and Re fluxes.  Thus 
interannual variation in either GPP or Re tends to propagate into NEE.  At the annual time 
step, the tower data and simulations showed a similar amount of interannual variation in 
GPP, Re, and NEE.  The sign of the year-to-year changes was generally in agreement 
between tower and modeled data (Figure 8).

Tower and model data generally showed that monthly Re anomalies that were correlated 
with monthly GPP anomalies (Table 4).  Soil drought would tend to affect GPP and Re
similarly, which would explain that general correlation.  Cool temperatures would likely 
reduce Re but not necessarily GPP, which would tend to weaken the correlation of the 
GPP and Re anomalies.  NEE monthly anomalies were strongly correlated with GPP 
anomalies at the ME and NR sites in both tower and model data.  In contrast, the NEE 
anomalies were most correlated with the Re anomalies at WR and CR in the tower data.  
There was only weak correlation of NEE anomalies with Re anomalies in the model data.

Cross-site and Off-site Parameter Optimization 

In the cross-site optimizations, the parameter values selected were generally intermediate 
among the ranges of site specific values (Table 3).  The ability of the site-level 
simulations to capture variation was generally reduced in the case of the multisite 
optimization.  RMSE always increased in the case of GPP through not always for NEE 
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(Table 5).  The ability to capture interannual variation in NEE was also reduced (Figure 
9).  

When parameters from the WR optimization were used at the other sites, the mid 
growing season residuals generally increased relative to the site level parameterization 
(Figure 10).  In the case of GPP at MR, the more positive residuals (model 
underestimates) were primarily because of the greater sensitivity to VPD at WR (Table 3) 
and relatively high VPDs elsewhere, especially at MR.  In the case of Rh, the higher 
residuals were primarily because of the relatively low sensitivity of Rh to temperature at 
WR (Table 3) which tended to cause underestimates elsewhere.  

The cross-site, cross-year RMSEs for GPP were similar in each case where the site 
specific parameter values were used across all sites.  The RMSEs for Re varied more 
widely (1.33 – 2.36) (Figure 11).

Discussion

FPAR Issues

Both the MODIS and SeaWiFS FPAR products are based on surface reflectance data and 
radiative transfer modeling (Myneni et al. 2002, Gobron et al. 2006).  Despite an 8-10 
day compositing period, many bin periods remained at these sites that were continuously 
overcast at the overpass time (12:00 for MODIS and 13:30 for SeaWiFS, local time).  
Once the intervals with low quality data were filled with the Zhao et al algorithm (2005), 
a mostly stable FPAR trajectory was produced.  The MODISTS smoothing clearly reduces 
some artifactual short term variation in the MODISfill product. The week-to-week 
variation remaining after filling/smoothing is especially low in the summer growing 
season when FPAR is most important. 

The absolute magnitude of the FPAR estimates was consistently high for the MODIS 
products, with summertime FPARs on the order of 0.95 across all sites.  These high 
FPARs are accurate at the two high LAI sites (CR and WR) but are clearly overestimates 
at MR and NR where LAIs are much lower.  A tendency for the MODIS product to 
overestimate FPAR has also been observed in other biomes (Fensholt et al. 2004, Turner 
et al. 2005).  These results imply that the MODIS algorithm may be oversensitive at low 
FPARs and tend to saturate at high FPARs.  The Enhanced Vegetation Index (EVI) is 
also produced from the MODIS reflectances and was designed to address the saturation 
issue (Huete et al. 2002).  EVI is used as a substitute for FPAR in several diagnostic 
carbon flux models (Xiao et al. 2004, Sims et al. 2005) but the saturation issue has not 
been examined.

The SeaWiFS FPARs had maximum values of about 0.6 at CR and WR, which were 
clearly underestimates.  Maximum values at MR and NR were about 0.3 which were also 
consistent underestimates.  However, there appears to be more information on spatial 
patterns in FPAR in the SeaWiFS product at these conifer forest sites compared to the 
MODIS product because of the greater dynamic range between low and high FPAR sites.
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At the NR site, there are periods of snow cover every year and these seem to be registered 
on the MODIS product but not the SW product.  In contrast, snow is rare at the CR site.  
Nevertheless, both FPAR products there show seasonality in FPAR, probably related to 
issues with cloudiness.  In any case, the apparent FPAR artifacts during the winter at 
these sites have little effect on simulated fluxes because incident PAR and Tmin are 
relatively low already.

For the most part, FPAR does not vary much interannually at conifer sites (        ), which 
is consistent with the similar satellite-based estimates for midsummer FPARs across 
years at these sites.  Both the MODIS and SeaWiFS products have been shown to be 
sensitive to large disturbances such as fire (Turner et al. 2006, Gobron et al. 2006).

The slightly more accurate simulations of NEE using SWfill for the cross site optimization 
(Table 2, Figure 3) would be expected because the lower FPARs in SWfill at the less 
productive sites is providing the simulation with more information than is the case with 
MODISfill.  The difference between outputs based on MODISfill and SWfill is greatest at 
the low LAI sites like NR (Figure 4).  The artifactually high FPAR in MODISfill tends to 
push the GPP and Re too high there.  The optimized based rates for Ra and Rh were high 
in the case of the SWfill optimization (Table 2) because both Ra and Rh are driven by 
FPAR and since the FPARs are low, the optimized base rates are high.

The RMSEs for the MODISTS FPAR were less than or equal to those for the MODISfill
FPAR.  The modest benefits are a function of smoothing out artifactual short term 
variation associated with clouds.  Nightengale et al. ( In Press) showed a similar modest 
effect of the Timesat smoothing when the product was used in CASA, another diagnostic 
carbon flux model.

Variation in Site-Level Parameterization

The sites differed widely in the maximum and average values for GPP.  The maximum 
values for tower GPP were greatest at CR, intermediate at WR and MR, and lowest at 
NR.  These values are consistent with expectations based on climate and stand age: NR is 
the coldest site and the low maximum GPP is associated with a conservative 
ecophysiological strategy often found in tress in extreme environments) (Woodward 
1995).  The stand age at NR is also relatively high which introduces an additional 
constraint on productivity (Gower et al. 1996).  CR has a mild climate and is a relatively 
young stand, thus has higher maximum GPP.  The WR site is unusual in having relatively 
old trees (~ 450 yrs), which may account for the lower maximum GPP. The MR site is 
young for Ponderosa pine but often experiences effects of high VPDs and soil drought on 
GPP.  

With site-level optimization, the CFLUX simulations of GPP generally agreed well with 
the tower data.  One exception was a period of high GPP in the simulations at NR in 2004 
driven by an artifactual bump in the FPAR (Figure 2, 5).  A second exception was the 
days of artificially low GPP in mid summer at WR.  The optimization there selected VPD 
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limits of 0 and 2500 Pa, which were low relative to the limits selected at the other sites 
and tended to make the simulations over sensitive to VPD.  

As would be expected because of its low productivity, the observed clear-sky LUE (Table 
1) and optimize maximum LUE (Table 3) were lowest at NR among the sites. Values for 
maximum LUE ranged form 3 to 4 gC/MJ at the other sites, close to the maximum 
physiologically possible LUE.  

The optimized values for minimum temperature parameters were similar across sites and 
were similar to the values used in the MOD17 diagnostic model in global runs with 
MODIS data (Running et al. 2000).  The optimization did not use the Tmin scalar at WR, 
possibly because incident PAR was a better predictor.  The optimization selected a 
relatively low VPD minimum and maximum at WR and this may reflect a conservative 
ecophysiology associated with the quite old trees there.

The maximum Re in the observations generally followed the pattern in maximum GPP, 
with CR>WR>MR>NR.  After optimizing the base rates for Rm and Rh, the simulations 
showed generally good agreement with the observations.  The optimized values for the 
base rate of Rm were conspicuously low at CR (Table 3) which is consistent with it being 
a relatively young stand in a favorable site.  The optimized base rate for Rh was also 
relatively low at CR but the temperature sensitivity for Rh was much higher than at the 
other sites, thus apparently compensating for the lower base rate.

The observations showed strong site-specific differences in the relative importance of 
GPP vs. Re monthly anomalies in explaining NEE monthly anomalies.  At MR and NR, 
the GPP anomaly was more closely correlated with the NEE anomaly whereas at CR and 
WR it was the Re anomaly.  This difference could be interpreted as a greater sensitivity of 
Rm component of Re at CR and WR because LAI and aboveground biomass were much 
greater (Fauk et al. 2008).  The modeled NEE anomalies were most strongly driven by 
GPP anomalies in all cases.  The difference at the high LAI sites may be due to an 
underestimation of Rm because the values of SeaWiFS FPARs are artifactually low.  
Nevertheless, the model did account for 70% of the year to year variation in NEE across 
all sites (Figure 9).

Cross-site Parameter Optimization

The increase in error when running with parameters optimized across all sites is expected 
because parameters optimized at the site level differed from those derived from the cross 
site optimization in some cases.  The RMSE increase was less than 25% except in one 
case (NEE at NR).  There were much larger increases in error in some cases when 
parameters optimized at one site were used across all sites (Figure 11).  The cross-site 
RMSE for NEE was between 1.26 and 1.75 with the site-specific optimization and was 
1.13 with the cross-site optimization.  This response indicates the benefits of a multisite 
parameter optimization approach. 
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With the increase in number of flux towers either currently or previously supported in 
each biome, the possibilities for alternative parameter optimization schemes is growing.  
Two or more tower sites can be found in most of the Level I ecoregions in North America 
(CEC 2008).  Further research is needed on the possible trade-offs of using a single tower 
site in a Level II or Level III ecoregion vs. multiple towers sites in a Level I ecoregion.  
In Turner et al. (2006), CFLUX was optimized by vegetation cover type for the Level 3 
ecoregions in western Oregon but that required using outputs from the Biome-BGC 
model  run at selected points as reference data because there were insufficient towers. 
Either multiple sites within Level I ecoregions or single sites within higher level 
ecoregion stratifications would be an improvement over single site per ecoregion at a low 
level of ecoregion stratification. 

Conclusions

Diagnostic carbon cycle models are increasingly used to monitor terrestrial gross 
ecosystem exchange, ecosystem respiration, and net ecosystem exchange at regional to 
global scales.  FPAR products from different sensors vary widely in their absolute values 
for particular sites and their dynamic range across sites.  Site-specific parameter 
optimization at eddy covariance flux tower sites can produce simulations with good fits 
to observational data but optimized parameters may vary across sites within a biome.  For 
large area simulations, a cross-site parameter optimization within a given vegetation 
cover type will reduce prediction error compared with a single site optimization.
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Table 1.  Site characteristics.  LUEclear-sky refers to light use efficiency at the flux tower 
under clear skies and favorable conditions.

Site                 Campbell Rivera Wind Riverb Metolius Riverc Niwot Ridged

Location     49o52’N,               45o49’N               44o27’N                   40o02’N
                            125o20’W             121o57’W            121o33’W                105o33’W

Precipitation (cm)       1500                        247                         55                            80

Mean Annual
Temperature  (oC)          8.5                         8.7                        7.5                            1.5

Stand Age (yrs)     56                    ~ 450                          89                        ~ 100

Leaf Area Index    8.4                        8.6                         2.8                            4.2
(m2m-2)

fPAR   (0-1)              0.95e                     0.95e                       0.45f                         0.93e

LUEclear-sky (gC MJ-1)     1.0                        1.2                           0.9                            0.4     

________________________________________________________________________
a Humphreys et al. 2006
b Falk et al. 2008
c Irvine et al. 2004
d Sacks et al. 2007
eDerived from LAI using Beer’s Law (Jarvis and Levarez 1983)
f Makela et al. 2008
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Table 2.  Comparison of RMSE for gross ecosystem exchange (GEE), ecosystem 
respiration (Re) and net ecosystem exchange (NEE) for three forms of FPAR.  Parameter 
optimization was across all sites and all years.
_______________________________________________________________________

                                                                              FPAR Type

      MODISfill MODISTS SeaWIFSfill
Error
     RMSEGPP                                 1.68                           1.55                               1.67
     RMSERe                                  1.54                           1.43                               1.45
     RMSENEE                               1.25                           1.26                               1.13

_______________________________________________________________________
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Table 3.  Ecophysiological parameter estimates for site-specific and cross-site 
optimizations.  LUE is light use efficiency.  Tmin_min is the temperature at which LUE 
begins to be reduced.  Tmin_max is the tempeatrure at which LUE is reduced to zero.  
VPD_min is the vapor pressure defict at which LUE begins to be reduced. PPD_max is 
the vapor pressure deficit at which LUE is reduced to zero.  Rm_base is the base rate for 
maintenance respiration.  Rh_base is the base rate for heterotrophic respiration.  Rh_a is 
is the temperature sensitivity coefficient.  FPAR_min is the minimum value for FPAR in 
the Rh algorithm.

________________________________________________________________________

                                                                      Site

                                     CR                 WR               ME                 NR              Cross-site
                              
Parameter

LUE_max (gC MJ-1)     4.0                  3.5                 4.0                 3.0                   4.0

Tmin_min (oC)             -12                  NO1              -12                  -8                    -12

Tmin_max  (oC)               4                  NO1              6                    4                      4

VPD_min (Pa)            1000                      0                  1000             1000                  0   

VPD_max  (Pa)           4000                 2500              4000              3000               3500           

Rm_base (gC m-2 d-1)    0.7                     2.7              2.3                     2.9                0.8

Rh_base (gC m-2 d-1)     5.0                       5.8             10.0                  10.0                8.8

Rh_a  (unitless)            0.18                      0.05           0.09                   0.05              0.10

FPAR_min (0-1)           0.30                      0.80          0.50                   0.60              0.40

1NO = Not Optimized
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Table 4.  Relationships of monthly anomalies (anom) for gross primary production 
(GPP), ecosystem respiration (Re), and net ecosystem exchange (NEE).  FPAR type is 
SWfill and optimization type is site-specific.

                       Tower                                    Model

Best Fit R2 Best Fit R2

Site

NEP anom vs. GPP anom
CR y = -0.11x - 0.01 0.01 y = 0.43x + 0.01 0.26
WR y = 0.30x + 0.00 0.05 y = 0.62x + 0.00 0.82
ME y = 0.59x + 0.01 0.82 y = 0.51x – 0.01 0.77
NR y = 0.59x + 0.01 0.63 y = 0.54x – 0.01 0.66

NEP anom vs. Re anom
CR y = -0.57x – 0.01 0.62 y = -0.34x + 0.00 0.13
WR y = -0.70x + 0.00 0.59 y = 0.65x – 0.00 0.21
ME y = 0.70x + 0.01 0.28 y = 0.55x + 0.01 0.28
NR y = 0.09x + 0.00 0.00 y = 0.26x – 0.01 0.05

GPP anom vs. Re anom
CR y = 0.43x – 0.00 0.48 y = 0.66x – 0.00 0.38
WR y = 0.30x  0.01 0.21 y = 1.66x – 0.01 0.63
ME y = 1.70x – 0.00 0.70 y = 1.55x – 0.01 0.76
NR y = 1.01x – 0.01 0.44 y = 1.26x – 0.01 0.58
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Table 5. Root Mean Square Error (RMSE) at the site level for gross primary production 
(GPP), ecosystem respiration (Re) and net ecosystem exchange (NEE) using site-specific 
and cross-site parameter optimization.

                                                                               Site

      CR            WR ME NR
GPP

RMSEsite
                1.48                     1.69                  1.21                 0.68                 

RMSEcross-site
          1.90                    2.15                   1.50                0.77

Re
RMSEsite

               1.30                   1.69                     1.21                 0.68                    
RMSEcross-site           2.13                   1.58                     1.07                 0.50

NEE
RMSEsite

                 1.18                    1.40                     1.00                 0.52     
RMSEcross-site              1.19                   1.46                      0.99                 0.72

_______________________________________________________________________
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Figure 1.  Site locations.  Background vegetation cover is from the MODIS sensor.
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Figure 2.  Four versions of FPAR time series data.  MODISorig is the standard product as 
it comes from NASA.  MODISfill is the same data with missing dates filled in using the 
Zhao et al. (2005) algorithm.  MODISts is the MODISfill data smoothed with the 
TIMESAT algorithm (Jonsson and Eklund 2004).  SWfill is the FPAR product from the 
SeaWIFS sensor (Gobron et al. 2006) filled using the Zhao et al. (2005) algorithm.  Years 
are 2002-2004 except CR (2001-2003).
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Figure 3.  Comparison of scatter plots of net ecosystem exchange (NEE) for the 
MODISfill and SWfill FPAR products across all sites and years. Separate parameter 
optimizations (one optimization across all sites + all years) were run for each FPAR 
product.
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Figure 4.  Comparison of scatter plots for gross primary production (GPP), ecosystem 
respiration (Re), and net ecosystem exchange (NEE) using MODISfill and SWfill at the 
Niwot Ridge site. A site-specific parameter optimization was used.
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Figure 5.  Times series comparison of observed and simulated gross primary production.
The SWfill FPAR product and site level optimizations were used.  The numbers in the 
upper right corner of each panel refer to the year.



27

Figure 6.  Times series comparison of observed and simulated ecosystem respiration. The 
SWfill FPAR product and site level optimizations were used.  The numbers in the upper 
right corner of each panel refer to the year.
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Figure 7.  Time series comparison of observed and simulated net ecosystem exchange.
The SWfill FPAR product and site level optimizations were used.  The numbers in the 
upper right corner of each panel refer to the year.
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Figure 8.  Interannual variation in gross primary production (GPP), ecosystem respiration 
(Re), and net ecosystem exchange (NEE) for tower observations and model simulations.
The SWfill FPAR and site level optimizations were used.
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Figure 9.  Relationship of the sign and magnitude of year-to-year differences in NEE 
using a) site-level parameter optimizations and b) a cross-site optimization.  Each point 
represents one year-to-year difference at one site.
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Figure 10.  Time series for the residuals for gross primary production (GPP), ecosystem 
respiration (Re), and net ecosystem exchange (NEE). The year is 2002.  Each panel has 
the residual (model – tower) for its site optimization and the residual when run with the 
Wind River site optimization parameters.
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Figure 11.  Effect on cross-site Root Mean Square Error (RMSE) of using site-specific 
parameters when running across sites.  CR = Campbell River, WR = Wind River, MR = 
Metolius River, NR = Niwot Ridge, All = cross-site.


